TEST 1

Shef Scholars

March 2024

1 Problems

Make sure to block out enough time for the test.
You may use your phone or mechanical clock as a timer.
Once you begin the exam, do not use the internet until you've finished the exam. Do not consult textbooks, chatbots, or outside sources. Any cheating may result in your application automatically being rejected and you being unable to apply to future iterations of Shef's Scholars or even other events organized by Shefs of Problem Solving.

Write up your solutions in English and put your email address (the same one you're putting in your application) on top of the paper on each submitted page.

The 3 of the problems are of roughly equal difficulty with 1 problem being a bit harder than other problems in all 3 exams. Note that problem difficulty is ultimately subjective and what might be the easiest problem in my mind might be the hardest for you and vice versa. The first problem in all 3 exams is considered to be roughly the easiest.

You have:

1. 180 minutes (3 hours) of exam time for the Begging Level exam which in on page X
2. 210 minutes (3 and a half hours) of exam time for the Apprentice Level exam which is on page 4
3. 240 minutes (4 hours) of exam time for the Machine level exam which is on page 6
4. 270 minutes (4 and a half hours) of exam time for the Shef level exam which is on page 8

Unless you are submitting your exam in word or $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ the write up is part of the time you have for the problem. If you are submitting your exam in word or LATEXplease write up the solutions on paper first and then rewrite them on $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ or word. Feel free not to submit papers you don't think are important. Note how long you took the exam on one of the papers.

Feel free to use the bathroom any amount of time you like during the exam and eat and drink as much as you like. My advice would be to treat this like a competition exam, so that you can practice your problem solving skills under some artificial exam pressure.

Label the problems and problem pages on top of every paper you submit.

Note that the exam isn't the determining factor in your application. We will try to look at your application as a whole, which may include an interview.

Just focus on doing your best !
Finally, enjoy the problems, they are fun :)

The Beginner

The Begginer Problems

1. Consider the positive integer $n=7+7^{2}+7^{3}+\ldots+7^{2023}$
(a) Show that the remainders of the divisions of 7^{2024} by 6 and by 48 are equal.
(b) Determine the last two decimal digits of the number $6 n$
2. Prove that numbers $1,2, \ldots, 16$ can be placed on a line such that sum of any two neighboring numbers is perfect square.
3. Let a, b, and c be real numbers that satisfy $a+b+c=$ 0 and $a^{2}+b^{2}+c^{2}=1$. Determine the value of $a^{4}+b^{4}+c^{4}$.
4. Let $A B C$ be an acute angled triangle with $A C>$ $A B$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of sides $B C, C A, A B$, respectively. Let D be the foot of the altitude from A to $B C$. Prove that $\angle D C^{\prime} A^{\prime}=\angle D B^{\prime} A^{\prime}=\angle A B C-$ $\angle A C B$.

The Apprentice

The Apprentice Problems

1. If the positive integers a, b, c satisfy the inequalities $a>b>c$ and $12 b>13 c>11 a$, show that $a+b+c \geq$ 56.
2. Two children, Shef and Machine, play a game several times, in which the winner receives x points, and the loser y points (x and y are nonnegative integers, with $x>y$, and in any game of the children is the winner and other is the loser). The final score 147 to 123 , in Shef's favour. The Machine has won 6 games. Determine the numbers x and y.
3. Let $A B C$ be a triangle with $A B=A C$ and $\angle B A C=$ 100. Let $B D$ be the angle bisector of the angle $\angle A B C$ with $D \in A C$, and E a point on line $B D$ such that D lies between B and E such that $B E=B C$. Let F be on segment $B C$ such that $A B=B F$. Prove that the lines $A C$ and $E F$ are ortogonal.
4. Let $n \geq 2$ be a positive integer. We say that a positive integer $\overline{a_{1} a_{2} \ldots a_{n}}$ is good if

$$
\overline{a_{1} a_{2} \ldots a_{n}}=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}+a_{1}+a_{2}+\ldots+a_{n}
$$

Find all good positive integers.

The Machine

The Machine Problems

1. Consider the set

$$
M=\left\{\left.\frac{a}{\overline{b a}}+\frac{b}{\overline{a b}} \right\rvert\, a, b \in\{1,2,3,4,5,6,7,8,9\}\right\}
$$

(a) Show that the set M contains no integer
(b) Find the smallest and largest element of M.
2. Find all non-negative integers x, y and z such that $x^{3}+2 y^{3}+4 z^{3}=9!$
3. Find positive integers n and $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
a_{1}+a_{2}+\ldots a_{n}=1979
$$

and the product $a_{1} a_{2} \ldots a_{n}$ as large as possible.
4. In acute-angled triangle $A B C, B H$ is the altitude of the vertex B. The points D and E are midpoints of $A B$ and $A C$ respectively. Suppose that F be the reflection of H with respect to $E D$. Prove that the line $B F$ passes through circumcenter of $A B C$.

The Shef

The Shef Problems

1. Show that for every integer $n \geq 3$ there exists positive integers $\left[x_{1}, 2 x_{2}, x_{3}, \cdots, x_{n}\right.$ pairwise different so that $\{2, n\} \subset\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=1
$$

2. Let n and k be two positive integers such that $1 \leq$ $n \leq k$. Prove that if $d^{k}+k$ is a prime number for each positive divisor d of n, then $n+k$ is a prime number.
3. In triangle $A B C, I$ is the incenter. We have chosen points P, Q, R on segments $I A, I B, I C$ respectively such that $I P \cdot I A=I Q \cdot I B=I R \cdot I C$. Prove that the points I and O belong to Euler line of triangle $P Q R$ where O is circumcenter of $A B C$.
4. Let A and B be two finite sets. Find the number of functions $f: A \rightarrow B$ satisfying the property that there exist two functions $g: A \rightarrow B$ and $h: B \rightarrow$ A such that $g(h(x))=x, \forall x \in B$ and $h(g(x))=$ $f(x), \forall x \in A$.
